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Introduction. My initial objective will be to recall to mind some standard
material, to establish notation and terminology. I expect to draw fairly heavily
from the Mathematica slide show “Some Miscellaneous Adventures in
Experimental Mathematical Physics,” (notes form a Reed College Physics
Seminar presented on 9 November 2011), and also from other Wheeler notes,
both ancient and modern.

Basics of discrete Markov processes. Let the stochastic vector

p0 =





p1

p2
...

pn





0

: all pi ! 0,
n∑

i=1

pi = 1

describe what is known about the initial state of an n-state system. We are
interested in situations in which the state evolves by discrete steps, where the
evolution is achieved by linear transformations that remain unchanged from
step to step:

p i −→ p i+1 = T p i : T =





t11 t12 · · · t1n

t21 t22 · · · t2n
...

...
. . .

...
tn1 tn2 · · · tnn





Hwere the elements of the “transition matrix” T are by nature conditional
probabilities:

tjk = prob(j|k) = probability of transition j ← k

The requirement that

p stochastic =⇒ Tp stochastic (all p)
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gives ∑

j

∑

k

tjkpk =
∑

k

pk

∑

j

tjk = 1 : all p0

In short: the individual columns of the transition matrix T must be themselves
stochastic.

Many (but by no means all) cases of interest are subject to the principle
of detailed balance

probability j ← k = probability k ← j

which enforces the symmetry of T; such real symmetric transition matrices are
said to be “balanced.”

The upshot of the Chapman-Kolmogorov equation (which at the moment
I am content to justify by random numerical simulation) is that products of
distinct (generally unbalanced) transition matrices are again transition matrices:

The set of all T-matrices is multiplicatively closed

But the same cannot be said of the subset of all balanced transition matrices:
products of symmetric matrices are symmetric if and only if they commute.

This subject is illuminated by the Perron-Frobenius theorem, which
asserts that if the real square matrix M is “positive” (meaning all elements
greater than 0), then

• There is always a non-degenerate real eigenvalue (called the “leading”
eigenvalue). . .
• . . .which is always greater than moduli of the other eigenvalues (real
or complex);
• The elements of the associated eigenvector are all real and of the same
sign (so it is always stochastic to within a multiplicative factor), and. . .
• . . . there are no other such eigenvectors; all others have either complex
elements or elements of opposite sign.

Those properties pertain also—subject to certain frequently satisfied conditions
—to “non-negative” (some elements 0, but all positive) real square matrices.

Random simulations—which of course conform to the assertions of the
Perron-Frobenius theorem—drive home the fact that the eigenvalues of
unbalanced T-matrices (which Mathematica presents in order of descending
absolute value) very frequently occur in conjugate complex pairs (as also do
their associated eigenvectors). The eigenvalues of balanced T-matrices are, of
course, all real, and the (invariably real) eigenvectors associated with distinct
eigenvalues are invariably orthogonal. Simulations reveal that for all T-matrices
—balanced or unbalanced—the leading eigenvalue is invariably unity. And that
for balanced (but not for unbalanced) T-matrices the elements of the leading
unitized eigenvector are invariably identical, and given by 1/dimension.
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Familiarly, powerful conclusions can be drawn from the fact that every
symmetric real matrix (more generally: every hermitian complex matrix) admits
of “spectral resolution”

M =
∑

iλiPi (1)

where the {λi} are the real eigenvalues of M and the {Pi} are a complete set
of orthogonal projection matrices that project onto the eigenspaces of M. Less
familiar is the

generalized spectral resolution

that pertains to non-symmetric real (more generally: non-hermitian complex)
matrices. The standard theory is as it stands of direct relevance to the theory
of balanced Markov processes, but the theory of unbalanced processes requires
the more general conception of spectral resolution that I digress now to develop.
It hinges on the notion of “biorthogonality.”

Let {|ai)} refer to a set of (generally complex) eigenvectors of the (real
or complex) n × n matrix M, and {λi} to the associated (generally complex)
eigenvalues. Following Dirac, we write (ai| to denote the conjugate transpose
(adjoint) of |ai). When M is real and symmetric the {|ai)} are (or, in cases
of spectral degeneracy, can be contrived to be) orthogonal, but in general they
provide a non-orthogonal basis in the (generally complex) vector space Vn.
Since neither orthogonality nor normality are assumed, we have

(ai|aj) = gij

where ‖gij‖ is hermitian and (by linear independence) non-singular. The generic
element |x)∈Vn can be developed

|x) = |ak)xk

which gives
(aj |x) = gjkxk

Writing ‖gij‖–1 = ‖gij‖ we have

gij(aj |x) = gijgjkxk = δi
kxk = xi

giving
|x) = |ai)gij(aj |x) : all |x)

from which we conclude that

|ai)gij(aj | = I

Introduce now into Vn a second non-orthogonal basis with elements

|Aj) = |ai)gij similarly (Ai| = gij(aj |
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which supply these alternative constructions of the unit matrix:

|Ai)(ai| = |Ai)gij(Aj | = |aj)(Aj | = I

Moreover
(Ai|aj) = gik(ak|aj) = gikgkj = δi

j

which is to say:
|Ai) ⊥ all |aj) : j (= i

The non-orthonormal bases {|ai)} and {|Aj)} are said to be “biorthogonal” (or
“reciprocal”).1

Look now to the matrices

Pi = |ai)(Ai| : no summation on i

where the index placement on Pi is merely conventional (intended to convey no
transformation-theoretic meaning). Those are seen to be orthogonal projection
matrices

PiPj = |ai)(Ai|aj)(Aj | = |ai)δi
j(A

j | =
{

Pi : i = j
O : i (= j

and have already been seen to be complete:
∑

i Pi = I. They project onto
1-spaces (rays); specifically

right action: Pi|x) = |ai)xi

left action: (x|Pi = xi (Ai|

}
: no summation on i

Let W be an arbitrary n × n square matrix. We are in position now to
write

W = I W I
=

∑
ij Pi W Pj

=
∑

ij |ai)(Ai|W |aj)(Aj | (2)

=
∑

ij wi
j |ai)(Aj | where wi

j = (Ai|W |aj) (3)

Here W is displayed as a weighted linear combination of the n2-population of
matrices

F j
i = |ai)(Aj | : F i

i = Pi

(these provide a “basis in the space of matrices”) and ‖mi
j‖ provides, with

respect to the non-orthogonal {|ai)}-basis, the matrix representation of W ; it
permits |x) → |x̃) = W |x) to be represented

xi → x̃i = mi
jx

j

1 When {|ai)} is in fact orthonormal (gij = δij) the distinction between
{|ai)} and {|Ai)}—as also between {(ai|} and {(Ai|}—evaporates.
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We note in passing that the F-matrices are tracewise orthogonal

tr(F j
i F l

k ) = δ jl
ik

so (3) can be written as a “Fourier identity”

W =
∑

ij wi
jF

j
i with wi

j = tr(F j
i W)

All of which simplifies very greatly when W is taken to be the matrix
M that gave birth to the biorthogonal bases {|ai)} and {|Ai)}. For (2) then
becomes

M =
∑

ij |ai)(A i|M |aj)(A j |
=

∑
ij |ai)λjδ

i
j(A

j |
=

∑
iλiPi (4)

which provides the “generalized spectral resolution” of M. When M is hermitian
(or real symmetric) the eigenvalues λi and projectors Pi are real and (4) gives
back the standard spectral resolution (1). But when hermiticity/real symmetry
are abandoned they may become complex, though the structure (4 ≡ 1) survives.
When M is real but non-symmetric (as unbalanced transition matrices are)
they—even though sometimes complex—still conspire to reproduce the reality
of M. End of digression .

The generalized spectral representation (4) permits some standard tricks
to be performed in the non-standard context provided by balanced/unbalanced
T-matrices, tricks that hinge on the circumstances that the Pi comprise a
complete set of orthogonal projectors with

tr Pi = dimension di of the subspace onto which Pi projects (5)

For example—working from
T =

∑
iλiPi (6)

—we have

Tn =
∑

i(λi)nPi : n = 0, 1, 2, . . . (7)
T –1 =

∑
i(λi)−1Pi

= ∞ if any of the eigenvalues vanish
tr T =

∑
ireal parts of the eigenvalues

—the latter because the eigenvalues of T (real) occur in conjugate pairs. As
previously noted, the leading eigenvalue of T-matrices is invariably λ1 = 1, while
from the reality of such matrices it follows by the Perron-Frobenius theorem
that for the other eigenvalues we have 1 > |λi| > 0 : i = 2, 3, . . . , d. It follows
therefore from (7) that

lim
n→∞

Tn = P1 = |a1)(A1| (8)

which has this important consequence: all initial |x) are sent asymptotically to
the multiples of |a1); all stochastic states p0 evolve to a T-dependent stochastic
state p∞ that retains no recollection of where it came from.
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Markov interpolation & continuousMarkov processes. If all λi are non-zero (i.e.,
if M is nonsingular) we can by (4) introduce

L =
∑

i(log λi)Pi (9)

and obtain2

M = exp(L)

whence Mn = exp(nL) or—reverting to T-notation underscore the fact that
we will henceforth have interest in the preceding material only as it relates to
Markov processes—

Tn = exp(nL) (10)

It might, on this basis, seem natural to propose

T(t) = exp(tL) : t a continuous parameter, called “time” (11)

as a t-parameterized family of Markov matrices that interpolates between the
elements of the discrete set {T0, T1, T2, T3, . . .}. That proposal is, however,
marred by a fatal flaw: the eigenvalues (and therefore also the associated
eigenvectors) of unbalanced T-matrices are frequently complex , and the
eigenvalues of balanced T-matrices are—though always real—frequently
negative. In both cases, log λ is complex (and multivalued). So T(t) is complex
except at t = 0,±1,±2, . . . , though simulations3 indicate that its columns still
sum to 1 + 0i. The elements of

pt = T(t)p0

are found similarly to sum to 1+0i, but pt when complex cannot possibly refer

2 From (9), we note in passing, it follows by

tr Pi = dimension di of the subpace onto which Pi projects
= degeneracy di of the eigenvalue λi

that
tr L =

∑
idi(log λi) =

∏
i(λi)di = det M

which gives the elegant (but nameless) equation

det M = tr log M

The usual derivation of this equation proceeds from the strong assumption that
M can be brought by similarity transformation to diagonal form: M = S–1D S.

3 The Mathematica command MatrixPower[M,n] works even when n is
not an integer. It produces results that conform to the principle

MatrixPower[M,p].MatrixPower[M,q]= MatrixPower[M,p+q]

for all real or complex M, p and q.
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to the stochastic state of a system. Evidently, the interpolation proposal (11)
fails except in cases were all eigenvalues of T are positive (or so it might appear;
be prepared, however, for a surprise!).

Differentially,
pt = T(t)p0 = exp(tK)p0

(the reason for the notational adjustment L → K will become clear in a moment)
becomes

pt+τ = {I + τK}pt

If pt is stochastic then pt+τ will also be if and only if I+τK is Markovian, which
requires that K be a matrix the off-diagonal elements of which are non-negative
and the columns of which sum to zero. Such matrices are called “Kirchhoff
matrices” because they are central to S. Katutani’s random walk reconstruction
of Kirchhoff’s laws.4 With elements that are typically real numbers instead of
integers, they generalize the essential structure of the “Laplace matrices” that
enter into the classical/quantum theory of walks on graphs, which are in turn
closely related to the “adjacency matrices” that describe the structure of graphs.
The can be constructed by adding to a matrix of the “invertebrate” form

A =





0 a12 a13 · · · a1n

a21 0 a23 · · · a2n

a31 a32 0 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · 0




: non-negative real elements

the diagonal matrix

D =





−A1 0 0 · · · 0
0 −A2 0 · · · 0
0 0 −A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −An




: Ak =

∑
jajk

The resulting Kirchhoff matrix

K = D + A

has columns that sum to zero, and will be symmetric or not according as A is.

4 “Markov processes and the Direchlet problem,” Proc. Jap. Acad. 21, 227–
233 (1945). Katutani’s fundamental work, as it applies specifically to circuit
theory, was developed by J. A. Nash-Williams, “Random walk and electric
currents in networks,” Proc. Camb. Phil. Soc. 55, 181–194 (1959) and is
discussed in elaborate detail by Peter G. Doyle & J. Laurie Snell in Random
Walks and Electric Networks, originally published as Carus Mathematical
MonographNo. 22 by the American Mathematical Association and now available
on the web as a free pdf download.
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We note that if K is a Kirchhoff matrix then so is every non-negative real scalar
multiple tK (t ! 0) of K. It follows that every matrix of which tK is the
logarithm

T(t) = exp(tK)

—this can be construed to be the solution of
d
dtT(t) = KT(t) : T(0) = I

—is Markovian. We conclude that only when log T is a Kirchhoff matrix are
we able to interpolate between the successive integral powers of T = T(1); only
in such cases can we speak of “continuous Markov processes.” The resulting
Markov matrices T(t) will balanced or unbalanced according as K is or is not
symmetric.

A series of simulations has established—surprisingly—that in unbalanced
cases the eigenvalues (ditto the eigenvectors) of T = exp K (and, more generally,
of T(t) = exp(tK)) occur in conjugate complex pairs, though T(t) is in all cases
real Markovian.5 Balanced cases present no such mystery.

Graphic display of the unbalanced evolution of pt reveals smooth curves
that link elements of p0 in a one-to-one way to elements of p∞. The linkage
is, however, not invariably order-preserving; the curves sometimes cross. In
balanced cases all curves converge to the same point (the elements of p∞ are
in such cases identical).

Irreversibility. There are n! ways to arrange for every row/column of an n × n
matrix to contain a solitary 1, all other elements being 0. The determinants of
such “permutation matrices” P are ±1 according as the permutational action
of P on the elements of a vector p is even or odd. All such matrices are
invertible and their inverses are again permutation matrices, as are all products
of permutation matrices and (trivially) the identity matrix I. All permutation
matrices are Markovian, and the set of such all such matrices (unlike the set of
all Markov matrices) possesses the group property. The subgroup structure of
the permutation group is a rich field into which I need not enter.

Nothing precludes the possibility that Markov matrix might be singular.
This simple unbalanced example

S =




1
2 0 1

2
1
2 0 1

2

0 1 0





serves to make the point; it is manifestly Markovian, manifestly singular. Its
eigenvalues are {1, 1

2 , 0} and its unitized leading eigenvector is { 1
3 , 1

3 , 1
3 }. It

sends

p0 −→ S∞ p0 =





1
3
1
3
1
3



 : all p0

5 I do not linger to consider how this is possible.
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in the asymptotic limit. All of which is standard Markovian stuff. Note,
however, that because S is singular it is impossible to contemplate inversion
of the process p0 −→ p1 = S p0.

Look now to the manifestly non-singular example

N =





1
2 0 1

2

0 0 1
2

1
2 1 0





The eigenvalues of N are {1,− 1
4 (
√

5 + 1), 1
4 (
√

5 − 1)} and its unitized leading
eigenvector is { 2

5 , 1
5 , 2

5 }. It sends

p0 −→ N∞ p0 =





2
5
1
5
2
5



 : all p0

—standard Markovian stuff again—and because N is non-singular it is possible
at least to contemplate inversion of the process p0 −→ p1 = N p0. But N –1,
though it exists, is manifestly non-Markovian:

N –1 =




2 −2 0
−1 1 1
0 2 0





contains elements that fall outside the interval (0, 1) (though its columns do sum
to unity). And that is the general situation: the inverses of non-singular Markov
matrices T are generally non-Markovian; they contain elements that—either
because of sign or magnitude—cannot be interpreted as transition probabilities
(their columns generally sum to unity, but have not the structure of stochastic
vectors). Permutation matrices are exceptions to the rule (which is the reason
I brought them into the discussion). But generally speaking—if permutations
are set aside (see below)—we can say that. . .

Markov processes proceed deterministically to asymptotic steady states,
from which there is no Markovian means of retreat, no Markovian way to recover
the initial state. In this respect they resemble the many mixing processes
encountered in Nature, which lead to homogeneously mixed states that cannot
by any natural process be unmixed.

digression: some properties of permutation matrices

Consider the permutation matrices

C2 =
(

0 1
1 0

)
, C3 =




0 0 1
1 0 0
0 1 0



 , C4 =





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



 , . . .

which, as non-negative (but not positive) matrices, lie somewhat beyond the
reach of the Perrod-Frobenius theorem. All powers of such matrices are again
permutation matrices. They are “cyclic” (describe cyclic permutations) in the
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sense that
(Cn)p = (Cn)p+n : p = 0, 1, 2, 3, . . .

from which it follows that

(Cn)n = I, Cn
–1 = (Cn)n−1

The eigenvalues of Cn are the complex nth roots of unity

e2πi(k/n) : k = 0, 1, 2, . . . , (n − 1)

which equi-partition the unit circle (one point invariably at 1 + 0i); as Cn is
raised to successively higher powers p those points chase each other around
the circle, until at p = n they have completed cycle. All eigenvalues have
unit amplitude: none dies or blows up when raised to powers. Which is to say:
(Cn)p p executes an endless series of cycles—does not approach a stable
asymptote as p → ∞.

Every n×n permutation matrix P can (by rearranging rows and columns)
be brought to the canonical form

P =





Ca

Cb
. . .

Cz



 : a + b + · · · + z = n

and is cyclic with period ν

Pν = P, therefore P –1 = P ν−1

where ν is the LCM of {a, b, . . . , z}. To discover the value of νmax for given
n, use Partitions[n] to list the partitions of n, use DeleteDuplicates[ ] to
remove co-cyclic redundancies from the individual partitions, use Times@@[ ]
to multiply the elements of each such non-redundant list, and search for the
maximum among the list of numbers thus produced. In the case n = 10 one is
led thus from 10 = 2+3+5 to νmax = 30 , 10! = 3, 628, 800. It is, I infer (this
must be a classic result), generally impossible to exhibit a single P that cycles
through all n! permutations (though in the case n = 2 this is trivial).

REMARK: The periodicity of P-matrices would appear to complicated the
practice of card shuffling. Perhaps that is why the practice proceeds

p0 → p = · · ·PcutPsuffle PcutPsuffle p0

It would be interesting to study the degree of randomization that can be
produced by such a procedure, but that would take me too far afield. I note,
however, that balanced (non-permutational!) Markovian procedures achieve
asymptotically perfect randomization (and that they disallow “unshuffling”).
End of digression.
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Entropic aspects of Markov processes. The entropy function

S(p =





p1

p2
...

pn



) ≡ −
n∑

k=1

pk log pk =
〈
log(1/pk)

〉

is used both in statistics and in physics (information theory) to provide a
measure of the “randomness” of the elements of the stochastic vector p . It
assumes the minimal value 0 when all but one of the elements of p are 0,
and the maximal value log n when all elements of p are equal (to 1/n). The
expression −0 log 0 is (and is considered by Mathematica to be) indeterminate,
but Mathematica knows that limp↓0(p log p) = 0. In computational work I make
use of the function6

ent(x) =
{

0 : x = 0
−x log x : 0 < x " 1

to avoid the disruption of awkward limiting procedures.

We begin by noting that multiplying p by P—once or many times, or
indeed by any sequence of permutation matrices—serves only to rearrange but
not to alter the collective components of p , so cannot change the value of S(p).
Entropy is a permutational invariant.7 To illustrate the point, look to the case

P = C2⊗C3 =





0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0





which sends




a
b
c
d
e
f




→





f
d
e
c
a
b




→





b
c
a
e
f
d




→





d
e
f
a
b
c




→





c
a
b
f
d
e




→





e
f
d
b
c
a




→





a
b
c
d
e
f




→ · · ·

6 Entered by the command

ent[x−]:=Piecewise[{{0,x=0},{-xLog[x],0<x≤1}}]
7 One must therefore use some other measure to quantify the randomizing

effectiveness of various card shuffling procedures. Peri Diaconis, the Stanford
magician/mathemaician, used “total variation distance” (one of several
“statistical distance metrics”) to establish the superiority of “riffling.” This and
related subjects are written about in elaborate detail in David A. Levin, Yuval
Peres & Elizabeth L. Wilmer, Markov Chains & Mixing Times , a 364-page
monograph that is available on the web as a free download. It is reported that
in a well-shuffled deck of cards one can expect to guess an average of four cards,
a claim that invites test by simulation.



12 Lipsky paper

each if which has entropy

S = −a log a − b log b − c log c − d log d − e log e − f log f

We have
period(P) = period(C2)···period(C3) = 2 · 3 = 6

—as illustrated.

NOTE: At this point I broke off (i) to construct figures showing the
entropy evolution produced by various balanced/unbalanced discrete/
continuous Markov processes—they reside in a notebook entitled
Lipsky Entropy Figures and of course resemble some of the figures
in Lipsky’s paper—and (ii) to work out an idea that popped into
my Markov-saturated head during a brunch hosted by the Turkish
parents of a precocious young Reed student (November 20); that idea
is developed in “Fractional Permutations.” I turn now—finally—
to Lipsky’s paper, to an effort to comprehend what he sought and
claims to have accomplished.

The Poisson distribution, but not quite. The following remarks were inspired by
Lipsky’s “§3.2 Markov Assumption.” I begin with an account of the
assumptions that give rise to the Poisson distribution, which Lipsky’s line of
argument very closely resembles.8 We posit a situation in which statistically
independent events (“clicks”) occur so sparcely that during any sufficiently brief
interval of time ∆t the probability that a click will occur can be described µ∆t
and there is no probability that two (or more) clicks will occur. Let

P0(t) =
{

probability that there is NO click
during the (finite) interval (0, t)

Then
P0(t + ∆t) = P0(t) · (1 − µ∆t)

gives
P0(t + ∆t) − P0(t)

∆t
= −µP0(t)

In the limit ∆t → 0 we therefore have
d
dtP0(t) = −µP0(t) =⇒ P0(t) = ke−µt (12)

Now let
P1(t) =

{
probability that precisely ONE click
occurred the interval (0, t)

Pn(t) =
{

probability that precisely n clicks
occurred the interval (0, t)

8 I follow the discussion that appears on pages 27–29 of Chapter I in my
Statistical Physics & Thermodynamics (1969–70 and 1971–72), which follows
closely the material that appears on pages 110–125 of W. Feller, An Introduction
to Probability Theory and its Applications (1950)
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Pretty clearly9

P1(t) =
∫ t

0
P0(s)µdsP0(t − s)

= k2µ

∫ t

0
e−µse−µ(t−s)ds

= k2µte−µt

P2(t) =
∫ ∫

0<s1<s2<t
P0(s1)µds1P0(s1 − s2)µds2P0(t − s2)

= k3µ2e−µt

∫ ∫

0<s1<s2<t
ds1ds2

= k3 1
2 (µt)2 e−µt

...

Pn(t) = kn+1 1
n! (µt)n e−µt

From the requirement

∞∑

n=0

Pn(t) = ke−µt
∞∑

n=0

1
n! (kµt)n = ke(k−1)µt = 1 : all t

we obtain k = 1, whence finally the Poisson distribution

Pn(t) = 1
n! (µt)n e−µt (13)

which S. Poisson (1837) obtained as a discrete limiting case8 of the binomial
distribution.10 The classic manifestation: given a radioactive sample, record
the number of Geiger clicks suring each of a large number of t-second intervals.
The data can be expected to conform (to with in experimental error) to (13) for
some best estimate of µ, from which can recover the half-life of the radioactive
atoms in question.

Lipsky has interest in a truncated version of the problem discussed above,
one which involves only the function P0(t). To the argument that gave (12) he
adjoins the initial conditionP0(0) =1, and instead of speaking of the“probability

9 The only tricky part of the argument lies in the observation that
∫ ∫

· · ·
∫

0<s1<s2<···<sn<t
ds1ds2 · · · dsn = 1

n! t
n

10 The binomial distribution describes probable winnings after N Bernoulli
trial flips of a loaded coin, probable location after N random steps with unequal
left/right preferences. By another limiting process it gives rise to the continuous
Gaussian (normal) distribution.
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that no click has occurred” he speaks

e−µt = “probability that the particle has not departed from state s1”

Let
A signify the event “no departure during the interval (0, t)
B signify the event “no departure during the interval (t, τ)

We have P(A and B) = P(B given A)·P(A) whence

P(B given A) = P(A and B)
P(A)

= e−µ(t+τ)

e−µt
= e−µτ

It is the t-independence of this result that leads Lipsky to attach Markov’s name
to it, though it seems too primitive to be called a “Markov process.” And it
was not a “Markov assumption” that led him to it, but a “Poisson assumption.”
He remarks (following Maxwell) that the functional equation

f(x + y) = f(x) · f(y) =⇒ f(x) = eax

Asimplemaster equation. Lipsky now (in his “§3.3 One Particle & Two States”)
posits that when his particle (under control of µ1) disappears from state s1

it promptly reappears in state s2, from which (under control of µ2) it can
disappear only to reappear in state s1. He looks to the dynamics of this duplex
process; i.e., to the evolution of the stochastic vector

p(t) =
(

p1(t)
p2(t)

)

that describes the probability that the particle is in state si at time t.

Evidently

p(t + dt) =
(

1 − µ1dt µ2dt
µ1dt 1 − µ2dt

)
p(t) (14)

which gives
d
dt p(t) = Kp(t) : K =

(
−µ1 +µ2

+µ1 −µ2

)
(15)

where K (whose columns sum to zero) is a t-independent Kirchhoff matrix, the
generator of the Markov matrix (elements are transition probabilities, columns
sum to unity)

M(t) = etK = 1
µ

(
µ2 + µ1e−µt µ2(1 − e−µt)
µ1(1 − e−µt) µ1 + µ2e−µt

)
: µ = µ1 + µ2 (16)

The implication is that p(t) evolves by a t-parameterized continuous Markov
process

p(t) = M(t)p(0) (17)
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Asymptotically we have

p(∞) = µ–1

(
µ2 µ2

µ1 µ1

)
p(0) =

(
µ2/µ
µ1/µ

)
: all p(0) (18)

Lipsky remarks that Kp(∞) = 0 , which is an expression simply of the
stationarity of the asymptotic distribution.

Equation (14) derives from the simple proposition that

differential growth = differential gain − differential loss

so (14) is in effect the “master equation” for Lipsky’s duplex process.

I used the Mathematica command MatrixExp to obtain the evaluation (16)
of etK. Lipsky remarks that ((16) can be obtained by appeal to the “spectral
decomposition theorem.” Since K is not symmetric, and its eigenvectors

(
µ2

µ1

)
and

(
−1
+1

)
, associated with eigenvalues 0 and −µ, respectively

are not orthogonal, one is obliged actually to appeal to the generalized spectral
decomposition,which—since he distinguishes between left and right eigenvectors
—is evidently what he has in mind. Since the generalized decomposition is, in
my experience, non-standard it would be interesting to know from what uncited
source he learned of it.

For at least 350 years it has been conventional to assume that mathematical
operators (think of d

dx ) operate to the right, and that is a convention that for
17% of that time I have honored in my own work. But somewhere along the
line Lipsky has acquired the habit of thinking of vectors preferentially as row
vectors, with the consequence that his (transposed) matrices operate to the
left, like the verbs that stand at the end of German sentences. I should look
into his book, and work that he cites, to discover whether that is the general
convention among queueing theorists (and engineers? I think not). . .perhaps
because clients with their demands stand patiently at the end of the que?

Relationship between theory and observation. In his “§4 Interpretations of p(t)”
makes remarks concerning the design of observational procedures that might be
used to confirm theoretical assertions about the evolved stochastic vector p(t).
He labors, however, subject to this handicap: the Poisson theory purports to
model systems of which one can present observable physical instances (samples
of radioactive material); one collects data, and shows that it conforms (to within
statistically determined limits) to a Poisson distribution with some optimally
selected µ-value. But Lipsky can point to no specific physical system that
behaves in the manner his idealized “one particle two state” theory prescribes.
This circumstance lends to his remarks a certain disembodied abstract quality.
Lipsky—proceding in the steps of Maxwell and Boltzmann—proposes two
alternative procedures:
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first procedure Look to an N -particle ensemble of particles, all initially
in state s1, let them jump up/down for a time T . tr = 1/µ,11 then record the
number n1 in state s1, the number n2 in state s2. From

(
n1/(n1 + n2)
n2/(n1 + n2)

)
=

(
µ2/(µ1 + µ2)
µ1/(µ1 + µ2)

)

one obtains the estimate

µ1

µ2
= n2

n1
: slightly different for every long run

but the individual values of µ1 and µ2 remain undetermined.

second procedure Sample the state of a single particle at times

t = {T, 2T, 3T, . . . , NT }

and record the number n1 of times it was found to be in state s1, the number n2

of times it was found to be in state s2. The particle begins successive episodes
in a variety of states, but by the time it is again observed its initial state has
(by T . tr) been forgotten. The resulting data is processed as before, and
leads to the same (limited) conclusion.

Lipsky attributes the equivalence of the two procedures—informally (since
no actual averaging is going on): ensemble average = time average) to “the
ergodic theorem.” Actually, such “ergodic theorems” as exist (such as the one
devised by George Birkoff and John von Neumann in the early 1930s) pertain
only to systems of specialized types, and hinge on restrictive assumptions.
Ergodic theory began with Boltzmann’s attempt to understand how reversible
dynamics can give rise to irreversible physics (the H-theorem), and in a
broadened has since spread into many parts of mathematics. As encountered by
Lipsky (and in the theory of Markov processes generally, where loss of memory
and irreversibility are characteristic) the justification of the ergodic hypothesis
poses no great mystery.

The charge that “Lipsky can point to no specific physical system that
behaves in the manner his idealized ‘one particle two state’ theory prescribes” is,
I have now to admit, somewhat unfair. For he can point to simulations of such
systems, which can be constructed by methods borrowed from the simulation
of random walks. Imagine a situation in which a walker’s next-step decision is
determined by the flip of a loaded coin. heads mean “if on s1 step to s2, but
if already on s2 stay there.” tails mean “if on s2 step to s1, but if already
on s1 stay there.” Let his state (location) at any instant be represented (as

11 tr is the “relaxation” or “equilibration” time by which the exponentials
in (16) have effectively died, and all memory of the initial state has been lost;
Lipsky’s assumption that all particles were initially in the same state is therefore
superfluous.
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previously) by

s1 =
(

1
0

)
else s2 =

(
0
1

)

The actions dictated by the loaded coin are accomplished by

H =
(

0 0
1 1

)
, T =

(
1 1
0 0

)

both of which are manifestly Markovian (and singular) The simulate a sequence
of 50 flips (assuming Heads to be twice as likely as Tails) command

flipsequence=RandomChoice[{ 2
3 , 1

3} → {H, T},50];

The command netaction=Apply[Dot,flipsequence] constructs the product
of that sequence of matrices, and

finalstate=netaction.RandomChoice[{ 1
2 , 1

2} → {s1, s2}]

constructs the state that results when netaction acts upon a randomly selected
initial state. The following command

Tally[Sort[Table[Apply[Dot,RandomChoice[{ 2
3 , 1

3} → {H, T},50].
RandomChoice[{ 1

2 , 1
2} → {s1, s2}]//MatrixForm,{k,1,100}]]]

(which runs in less than one second) conflates those actions, repeats the process
100 times, and tallys the results, producing a final result of which this

{{(
0
1

)
, 40

}
,
{(

1
0

)
, 60

}}

is typical. Which is, however, a hard way to do a simple thing. For from

HH = HT = H
T T = TH = T

we see that
H · (any product) = H
T · (any product) = T

In short: the effect of sequenced flips is entirely determined by the last flip. So
we might more simply have looked only to the randomized last flip, proceeding

Tally[Sort[Table[RandomChoice[{ 2
3 , 1

3} → {H, T}].
RandomChoice[{ 1

2 , 1
2} → {s1, s2}]//MatrixForm,{k,1,100}]]]

Or still more simply

Tally[Sort[Table[

RandomChoice[{ 2
3 , 1

3} → {s1, s2}]//MatrixForm,{k,1,100}]]]
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We conclude that “Lipsky walks” are so simple that their simulation teaches
us nothing that we did not already know.12Note that the simulations discussed
above serve equally well to model either of Lipsky’s procedures.

The simplest parallel process. In his “§5 Two Particles & Two States” Lipsky
looks to the simultaneous description of two independent copies of his “One
Particle & Two States” scenario; i.e., to “duplex” the argument developed
on pages 14–15. I break away from Lipsky’s paper to indicate how I would
approach that problem.

digression: The most natural way to duplex. Let the stochastic vectors

p1 =
(

p11

p12

)
and p2 =

(
p21

p22

)

refer to the distinguished particles #1 and #2, respectively, and let

p = p1 ⊗ p2 =





p11p21

p11p22

p12p21

p12p22



 ≡





p1

p2

p3

p4





(which is stochastic if p1 and p2 are) refer to the composite pair. We make use
of this property of the Kronecker product:13

(A ⊗ B)(C ⊗ D) = AC ⊗ BD

whenever the matrices are of such dimensions as to cause all of the products to
make sense (= be defined).

Working from

p(t + dt) = p1(t + dt) ⊗ p2(t + dt)

we from (14) have

p1(t + dt) = (I + K1dt)p1(t) : K1 =
(
−µ1 +µ2

+µ1 −µ2

)

p2(t + dt) = (I + K2dt)p1(t) : K2 =
(
−ν1 +ν2

+ν1 −ν2

)

12 This in high contrast to the “Golden Walk” and to other “Pisot walks with
shrinking steps” illustrated in “On some Borwein-inspired properties of random
walks with shrinking steps” (November 2016), or the Lévy walks on the plane
or random walks on graphene that I have illustrated in “Some miscellaneous
adventures in experimental mathematical physics,” notes (in the form of a
Mathematica slide show) for a Reed CollegePhysics Seminar (9 November2011).

13 A comprehensive list of such properties can be found on page 24 of Chapter I
in my Quantum Mechanics (2000).
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where—because it costs us nothing—I have for the moment assumed that the
parameters {ν1, ν2} that regulate the hopping of particle #2 are distinct from
those {µ1, µ2} that regulate the activity of #1. In first order (i.e., neglecting
the dt2 term) we have

p(t + dt) = [(I + K1dt)p1(t)] ⊗ [(I + K2dt)p2(t)]
= [p1(t) ⊗ p2(t)] +

{
[K1 p1(t) ⊗ Ip2(t)] + [Ip1(t) ⊗ K2 p2(t)]

}
dt

= p(t) +
{
(K1 ⊗ I) + (I ⊗ K2)

}
p1(t)dt

which gives
d
dt p(t) =Kp(t) (19.1)

K = (K1 ⊗ I) + (I ⊗ K2)

=





−µ1 − ν1 ν2 µ2 0
ν1 −µ1 − ν2 0 µ2

µ1 0 −µ2 − ν1 ν2

0 µ1 ν1 −µ2 − ν2



 (19.2)

Note that K is a real asymmetric Kirchhoff matrix (generator of a Markov
matrix): its off-diagonal elements are non-negative real numbers, and its
columns sum to zero. The eigenvalues of K are14

{λ1, λ2, λ3, λ4} = {0,−(µ1 + µ2),−(ν1 + ν2),−(µ1 + µ2) − (ν1 + ν2)}

The generalized spectral representation of K—worked out with the asssistance
of Mathematica—reads

K = λ1P1 + λ2P2 + λ3P3 + λ4P4 (20)

with

P1 = σ –1





µ2ν2 µ2ν2 µ2ν2 µ2ν2

µ2ν1 µ2ν1 µ2ν1 µ2ν1

µ1ν2 µ1ν2 µ1ν2 µ1ν2

µ1ν1 µ1ν1 µ1ν1 µ1ν1



 : σ ≡ (µ1 + µ2)(ν1 + ν2)

P2 = σ –1





µ1ν2 µ1ν2 −µ2ν2 −µ2ν2

µ1ν1 µ1ν1 −µ2ν1 −µ2ν1

−µ1ν2 −µ1ν2 µ2ν2 µ2ν2

−µ1ν1 −µ1ν1 µ2ν1 µ2ν1





P3 = σ –1





µ2ν1 −µ2ν2 ν2ν1 −µ2ν2

−µ2ν1 µ2ν2 −ν2ν1 µ2ν2

µ1ν1 −µ1ν2 µ1ν1 −µ1ν2

−µ1ν1 µ1ν2 −µ1ν1 µ1ν2





P4 = σ –1





µ1ν1 −µ1ν2 −ν2ν1 µ2ν2

−µ1ν1 µ1ν2 ν2ν1 −µ2ν2

−µ1ν1 µ1ν2 µ2ν1 −µ2ν2

µ1ν1 −µ1ν2 −µ2ν1 µ2ν2





14 Note in this connection that the eigenvalues of {K1, K2} are {0,−(µ1+µ2)}
and {0,−(ν1 + ν2)}, respectively.
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Each of those matrices is, as it happens, asymmetric.The columns of{P2, P3, P4}
are seen to sum to zero. The columns of P1 sum to unity, but that term is killed
by λ1 = 0, so does not destroy the Kirchhoff property of K.

If we set {ν1, ν2}→ {µ1, µ2} the eigenvalues of K become {0,−µ,−µ,−2µ}
(here µ ≡ µ1 + µ2) and the P-matrices become

Q1 = σ –1





µ2
2 µ2

2 µ2
2 µ2

2

µ1µ2 µ1µ2 µ1µ2 µ1µ2

µ1µ2 µ1µ2 µ1µ2 µ1µ2

µ2
1 µ2

1 µ2
1 µ2

1



 : σ ≡ (µ1 + µ2)2 = µ2

Q2 = σ –1





µ1µ2 µ1µ2 −µ2
2 −µ2

2

µ2
1 µ2

1 −µ1µ2 −µ1µ2

−µ1µ2 −µ1µ2 µ2
2 µ2

2

−µ2
1 −µ2

1 µ1µ2 µ1µ2





Q3 = σ –1





µ1µ2 −µ2
2 µ1µ2 −µ2

2

−µ1µ2 µ2
2 −µ1µ2 µ2

2

µ2
1 −µ1µ2 µ2

1 −µ1µ2

−µ2
1 µ1µ2 −µ2

1 µ1µ2





Q4 = σ –1





µ2
1 −µ1µ2 −µ1µ2 µ2

2

−µ2
1 µ1µ2 µ1µ2 −µ2

2

−µ2
1 µ1µ2 µ1µ2 −µ2

2

µ2
1 −µ1µ2 −µ1µ2 µ2

2





to which similar remarks pertain.

Looking to the Markov matrix generated by K, we have

M(t) = etK = P1 + eλ2tP2 + eλ3tP3 + eλ4tP4 (21)

From established properties of the P-matrices it follows that at all times all
columns of M(t) sum to unity. The {λ2, λ3, λ4} are all < 0, so

lim
t→∞

M(t) = P1

The eigenvalues of P1 are {0, 0, 0, σ}. The associated eigenvectors (as presented
by Mathematica)





1
0
0
−1



 ,





1
0
−1
0



 ,





1
−1
0
0



 , σ –1





µ2ν2

µ2ν1

µ1ν2

µ1ν1



 ≡ p∞

all have negative elements (so cannot be stochastic vectors) except for the last
(the Peron-Frobenius theorem again), which I have presented in the unitized
form required of stochastic vectors. Every initial state

p0 → p∞ asymptotically
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We have been looking to the evolution of

p = p1 ⊗ p2 =





p11p21

p11p22

p12p21

p12p22





where
p1αp2β = probability that

{
#1 is in state sα

and #2 is in state sβ

and should understand that the analysis hinges on two key assumptions:
• The particles are distinguished (wear identifying names);
• Their hopping activity is uncorrelated (statistically independent).

If we abandon the former assumption (i.e., if we assume the particles to
be indistinguishable) then we (i) can no longer entertain the possibility that
{ν1, ν2} and {µ1, µ2} are distinct, and (ii) must symmetrize the state vector ,
writing

q = 1
2 (p1 ⊗ p2) + 1

2 (p2 ⊗ p1) = 1
2





p11p21 + p21p11

p11p22 + p21p12

p12p21 + p22p11

p12p22 + p22p12



 =





q1

q
q
q4





where

q1 = probability that both are in state s1

q = q2 = q3 = probability that they are in different states
q4 = probability that both are in state s2

Looking now to the dynamics of q , we note that the elements of p2 ⊗ p1

differ only by a (cyclic) permutation from those of p = p1⊗ p2:

C(p1⊗ p2) = p2⊗ p1 : C =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 , C2 = I

So from (19)—which by {ν1, ν2} → {µ1, µ2} has become

d
dt (p1⊗ p2) = L(p1⊗ p2) : L =





−2µ1 µ2 µ2 0
µ1 −µ1 − µ2 0 µ2

µ1 0 −µ1 − µ2 µ2

0 µ1 µ1 −2µ2





—we obtain (after multiplication by C)
d
dt (p2⊗ p1) = CLC(p2⊗ p1) = L(p2⊗ p1) by CLC = L

Adding and dividing by 2, we obtain finally
d
dt q = Lq
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Results already in hand (see again page 20) supply the manifestly Kirchhoffian
matrix

L = 0 Q1 − µ(Q2 + Q3) − 2µQ4

and we note that vectors of the form q (2nd and 3rd components equal) are sent
by L into vectors of that same form. We are in position now to write

q(t) = M(t)q(0)

M(t) = etL = Q1 + e−µt(Q2 + Q3) + e−2µt Q4

which (for the reason noted just above) preserves the characteristic form of
symmetrized stochastic q -vectors. Finally, we have

lim
t→∞

M(t)q0 = q∞ ≡ µ−2





µ2
2

µ1µ2

µ1µ2

µ2
1



 : all q0

concluding remark: In quantum contexts symmetrization speaks of bosons;
fermions, on the other hand, entail antisymmetrization of the wave function,
which suggests that classical interest might attach to antisymmetrized
two-particle stochastic vectors

p1⊗ p2 − p2⊗ p1 =





0
+(p11p22 − p12p21)
−(p11p22 − p12p21)

0





But such vectors cannot be stochastic: their elements are of opposite sign
(therefore cannot both be positive) and sum to zero. For antisymmetrized
Kronecker products of three 2-vectors the problem becomes even more vivid:

a ⊗ b ⊗ c − a ⊗ c ⊗ b

+ b ⊗ c ⊗ a − b ⊗ a ⊗ c

+ c ⊗ a ⊗ b − c ⊗ b ⊗ a = 0 , invariably

which is an instance of the Jacobi identity.15 The short of it: in quantum
theory minus signs pose no problem, since probabilities arise from the modulus,
but in classical stochastic contexts they are intolerable, even when they do not
interfere with unitization. End of digression.

I return now to Lipsky’s §5.

15 For higher dimensional vectors one gets a non-zero vector the elements of
wich sum to zero.


